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32

33 Paper type: Primary Research Article  Abstract

34 Past vegetation and climatic conditions are known to influence current biodiversity 

35 patterns. However, whether their legacy effects affect the provision of multiple 

36 ecosystem functions, i.e. multifunctionality, remains largely unknown. Here we 

37 analyzed soil nutrient stocks and their transformation rates in 236 drylands from six 

38 continents to evaluate the associations between current levels of multifunctionality 

39 and legacy effects of last glacial maximum (LGM) desert biome distribution and 

40 climate. We found that past desert distribution and temperature legacy, defined as 

41 increasing temperature from LGM, were negatively correlated with contemporary 

42 multifunctionality even after accounting for predictors such as current climate, soil 

43 texture, plant species richness and site topography. Ecosystems that have been deserts 

44 since the LGM had up to 30% lower contemporary multifunctionality compared with 

45 those that were non-deserts during the LGM. In addition, ecosystems that experienced 

46 higher warming rates since the LGM had lower contemporary multifunctionality than 

47 those suffering lower warming rates, with a ~9% reduction per extra ºC. Past desert 

48 distribution and temperature legacies had direct negative effects, while temperature 

49 legacy also had indirect (via soil sand content) negative effects on multifunctionality. 

50 Our results indicate that past biome and climatic conditions have left a strong 

51 “functionality debt” in global drylands. They also suggest that ongoing warming and 

52 expansion of desert areas may leave a strong fingerprint in the future functioning of 

53 dryland ecosystems worldwide that needs to be considered when establishing 

54 management actions aiming to combat land degradation and desertification.

55 1. INTRODUCTION

56 Ecosystem attributes and functions, such as biodiversity and nutrient cycling, are not 

57 only driven by current environmental conditions, but also by those they have 

58 experienced in the past. The climate existing thousands of years ago has left a 

59 detectable fingerprint in the current distribution of plant and microbial communities 

60 (Blonder et al., 2018; Delgado-Baquerizo, Bissett, et al., 2017; Delgado-Baquerizo et 

61 al., 2018; Pärtel et al., 2017; Weigelt, Steinbauer, Cabral, & Kreft, 2016). Similarly, 

62 changes in land use that occurred centuries ago have been found to affect current soil 

63 carbon and nitrogen contents and cycling (Delgado-Baquerizo, Eldridge, et al., 2017; 

64 Dupouey, Dambrine, Laffite, & Moares, 2002). Despite the growing evidence of the 

65 impacts of past legacies on the contemporary structure and functioning of terrestrial 
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66 ecosystems, we lack empirical studies aiming to quantify the legacy effects of past 

67 climate and biome distribution on the current provision of multiple ecosystem 

68 functions (multifunctionality) related to nutrient stocks and their transformation rates. 

69 Quantifying these legacy effects is important not only to better understand the factors 

70 driving current variation in multifunctionality, but also to help foresee potential 

71 limitations in the provision of ecosystem services in the future derived from current 

72 rates of land degradation and climate change.

73 Legacy effects of past conditions on multifunctionality can be caused by 

74 long-term gains and losses of energy and nutrients accumulated over millennia 

75 (Delgado-Baquerizo, Eldridge, et al., 2017; Svenning, Eiserhardt, Normand, Ordonez, 

76 & Sandel, 2015). Furthermore, past climate or vegetation have been found to affect 

77 current patterns of soil texture and plant traits globally (Blonder et al., 2018; Prentice 

78 et al., 1992). Soil texture and plant traits are known to influence ecosystem functions 

79 (Blonder et al., 2018; Prentice et al., 1992). For example, loamy soils can carry over 

80 moisture from the wet season into the dry season for plant production more effectively 

81 than sandy soils (Prentice et al., 1992). Therefore, the legacy of past conditions on 

82 multifunctionality can also be indirectly mediated by changes in variables including 

83 soil texture (Prentice et al., 1992), plant functional traits (Blonder et al., 2018) and 

84 microbial communities (Delgado-Baquerizo, Bissett, et al., 2017). Differentiating 

85 between these direct and indirect effects is of crucial importance to better quantify 

86 which part of legacy effects can be managed for (i.e., those mediated by biodiversity) 

87 from those that cannot be buffered (i.e., the direct effect of past biome and climate 

88 conditions).

89 Global drylands, including hyper-arid, arid, semi-arid and dry-subhumid 

90 ecosystems, have been projected to experience higher warming rates with ongoing 

91 climate change than humid areas (Huang, Yu, Dai, Wei, & Kang, 2017). Increases in 

92 aridity due to ongoing global warming will increase the global extent of drylands, 

93 which already cover ~45% of the terrestrial surface (Prăvălie, 2016), by 11-23% by 

94 the end of this century (Huang, Yu, Guan, Wang, & Guo, 2016). Such aridification 

95 will threaten the livelihoods of people living in these areas, particularly in the 

96 developing world, and will exacerbate the risk of land degradation and desertification, 

97 which are already negatively affecting 250 million people (Reynolds et al., 2007). 

98 Given the inherently slow dynamics of soil nutrient buildup and plant 

99 productivity in drylands compared to other ecosystems (Fischer & Turner, 1978; 
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100 Huang et al., 2017), we would expect strong negative legacy effects of past biome and 

101 climate conditions on current multifunctionality levels, i.e. a “functionality debt”. The 

102 desert biome is characterized by low vegetation cover, and thus high soil erosion rates 

103 and low nutrient contents (Borrelli et al., 2017; Olson et al., 2001; Ray & Adams, 

104 2001). Therefore, ecosystems under a desert biome thousands of years ago should 

105 have lower multifunctionality than ecosystems under a more mesic biome in the same 

106 period, regardless of their current climate and biome. However, the impact of these 

107 legacy effects on dryland multifunctionality, as well as whether these effects are 

108 biodiversity- and soil texture-dependent, remains to be evaluated. Moreover, the 

109 relative importance of functionality debts vs. current climate and biome as drivers of 

110 contemporary multifunctionality is largely unknown. 

111 To address these gaps in our knowledge, we coupled data from a field survey of 

112 236 drylands from six continents (Figure 1) to existing databases on the historical 

113 distribution of past biomes and climates (Fick & Hijmans, 2017; Olson et al., 2001; 

114 Ray & Adams, 2001) to evaluate the legacy effects of desert distribution and climate 

115 during the last glacial maximum (LGM, about 22000 years ago) on current 

116 multifunctionality levels. Weigelt et al. (2016) suggested that glacial conditions have 

117 been more common than interglacial conditions during recent evolutionary time. The 

118 distribution of biomes during the LGM is representative of the dominant 

119 environmental conditions (including climate) during this period (Pärtel et al., 2017). 

120 Therefore, the LGM biome distribution is likely to have a strong legacy effect on 

121 current multifunctionality levels. We hypothesized that areas that have been under the 

122 desert biome during LGM should have a reduced contemporary multifunctionality 

123 compared to current deserts that were not so during the LGM (i.e. they exhibit a 

124 functionality debt). Furthermore, Maestre et al. (2012) found that multifunctionality 

125 was reduced with increasing temperature in global drylands. Therefore, we also 

126 hypothesized that current drylands that have suffered higher increases in temperature 

127 since the LGM will have lower multifunctionality when compared to those that have 

128 undergone lower warming rates. 

129

130 2. MATERIALS AND METHODS

131 2.1 Study sites

132 We used data from a global field survey conducted in 236 dryland ecosystems from 

133 19 countries (Figure 1, see also Table S1 in Supporting Information and Data S1). Our 
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134 field survey was limited by funding, accessibility to locations and geopolitical and 

135 safety circumstances. Because of these, a truly global random sampling covering all 

136 dryland locations worldwide was not possible. Nevertheless, our sampling aimed to 

137 cover a large range of the environmental conditions and soil/vegetation types found in 

138 dryland ecosystems worldwide. The 236 studied ecosystems cover a mean annual 

139 temperature (MAT) ranging from −1.8 to 28.2 ºC, and a mean annual precipitation 

140 (MAP) ranging from 66 to 1219 mm. They also cover over 25 categories of soil types 

141 from the FAO classification, including all main types present in drylands (Maestre et 

142 al., 2012). The vegetation types surveyed include grasslands, shrublands and savannas, 

143 and plant species richness varies from 1 to 52 species per 900 m2. 

144 2.2 Field survey 

145 We carried out data collection between February 2006 and December 2013 using a 

146 standardized sampling protocol. At each site, we surveyed vegetation using four 

147 30-m-long transects located parallel and separated 10 m among them (see Maestre et 

148 al., 2012 for details). At each transect, we established 20 quadrats of 1.5 m × 1.5 m 

149 and used the total number of perennial species found within the 80 quadrats surveyed 

150 as our estimation of species richness. We measured slope angle in situ with a 

151 clinometer. We sampled soils during the dry season in most of the sites using a 

152 stratified random procedure. At each plot, we randomly placed five 50 cm × 50 cm 

153 quadrats under the canopy of the dominant perennial species and in open areas devoid 

154 of perennial vegetation. We collected a composite sample consisting of five 145 cm3 

155 soil cores (0 - 7.5 cm depth) from each quadrat, which were bulked and homogenized 

156 in the field. When more than one dominant plant species was present, we also 

157 collected samples under the canopies of five randomly selected individuals of the 

158 co-dominant species. Thus, the number of soil samples varied between 10 and 15 per 

159 site. Back in the laboratory, we sieved soil samples using a 2 mm mesh and air-dried 

160 them for one month. To facilitate the comparison of results across sites, we shipped 

161 the dried soil samples from all sites to Spain (Rey Juan Carlos University) for 

162 laboratory analyses. 

163 2.3 Quantifying multifunctionality

164 To quantify multifunctionality, we selected 12 plant and soil variables that act as 

165 surrogates of carbon (C), nitrogen (N) and phosphorus (P) cycling and storage 

166 (functions hereafter). Functions related to the C cycle included plant productivity, soil 

167 organic C, pentoses and hexoses. Those from N and P cycles included soil nitrate, 
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168 dissolved organic N, proteins, potential N transformation rate, and enzymatic activity 

169 of phosphatase, available inorganic P, total P and inorganic P. These variables are 

170 considered to be critical measures of ecosystem functioning in drylands (see Whitford, 

171 2002 for a review). We included as many functions as possible while at the same time 

172 weighting equally for the three nutrient cycles. The functions selected include “true” 

173 ecosystem functions (sensu Reiss, Bridle, Montoya, & Woodward, 2009), such as 

174 potential N transformation rate, plant productivity and the activity of phosphathase, 

175 and nutrient stocks such as soil organic C and total P, which are indicators of nutrient 

176 cycling rates over the long term (Manning et al., 2018).

177 We assessed multifunctionality following the averaging approach of Maestre et al. 

178 (2012). We averaged the Z scores of the 12 functions to obtain ecosystem 

179 multifunctionality. This index is statistically robust (Maestre et al., 2012) and 

180 provides a holistic and easily interpretable measure to assess changes in 

181 multifunctionality, as the higher the values for the different ecosystem functions we 

182 measured, the higher the multifunctionality (Figure S1). We acknowledge that using 

183 an a priori standardized average may not allow to discriminate when all functions are 

184 performing at similar levels from situations when one function could be strongly 

185 outperforming the others (Byrnes et al., 2014). However, all individual functions in 

186 our dataset positively correlated with multifunctionality, except for soil inorganic P (r 

187 = −0.01, Figure S1). Moreover, we found only two negative correlations between the 

188 functions that were of some magnitude (r = −0.34 and −0.35), suggesting that there 

189 are not strong trade-offs between our surrogates of ecosystem functioning (Table S2). 

190 None of the correlations across all 12 functions was higher than 0.6, suggesting that 

191 our dataset did not contain high redundancy among the functions studied (Table S2). 

192 Multifunctionality calculated from the 12 functions correlated well with that 

193 calculated from a dataset of 16 functions (r = 0.88, Figure S2), thus it did not vary 

194 much when including other functions available, such as soil total nitrogen, amino 

195 acids, aromatic compounds or potential nitrogen depolymerisation.

196 We measured soil functions in the laboratory as described in Methods S1 in the 

197 Supporting Information. We also measured soil pH with a pH-meter in a 1:2.5 

198 (mass:volume, soil:water) suspension, and soil sand content according to Kettler et al. 

199 (2001). For all soil variables and functions, we estimated site-level values as the mean 

200 values measured in vegetated and open areas, weighted by their respective cover at 

201 each site (Maestre et al., 2012). We used the normalized difference vegetation index 
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202 (NDVI) as a surrogate for plant productivity because it acts as a proxy of 

203 photosynthetic activity and large-scale vegetation distribution (Pettorelli et al., 2005), 

204 and it shows good performance vs. other vegetation indices when used in dryland 

205 ecosystems such as those we studied (Gaitán et al., 2013). We retrieved NDVI data 

206 from the 250 m resolution moderate resolution imaging spectroradiometer (MODIS) 

207 aboard NASA's Terra satellites (http://daac.ornl.gov/index.shtml). We used the annual 

208 integral of NDVI (iNDVI, Ponce Campos et al., 2013) averaged for the period 2000 to 

209 2013 as a proxy of plant productivity at our sites. These iNDVI values correlated well 

210 with the average NDVI of the images before, during and after each soil and vegetation 

211 survey (Pearson's r = 0.76, Figure S3). We used the longer term iNDVI as these 

212 values are less influenced by short term variations in precipitation and temperature. 

213 2.4 Assessing biome and climatic legacies

214 We obtained mean annual temperature and precipitation values for each site for both 

215 current (1970-2000) and last glacial maximum (LGM; about 22000 years ago) 

216 conditions from Worldclim (Fick & Hijmans, 2017). We used the 2.5-minute 

217 resolution bioclimatic data for both periods, as 2.5-minute is the highest resolution 

218 available for LGM data. We defined climate legacy from LGM as the difference 

219 between current and LGM climate values for temperature and precipitation. 

220 Temperature and precipitation legacies range from 2.7 ºC to 10.7 ºC (mean = 4.8 ºC, 

221 standard deviation = 1.6) and from −300 mm to +600 mm (mean = −14 mm, standard 

222 deviation = 114) across sites, respectively.

223 We used the biome maps of Olson et al. (2001) and Ray & Adams (2001) to 

224 define current and LGM distributions of desert biomes, respectively (Figure 1), which 

225 included both tropical (≤ 10% vegetation cover) and temperate (≤ 20% vegetation 

226 cover) deserts. The LGM biome map was mainly based on plant fossil data, proxy 

227 data sources such as animal and sediment information and palaeoclimatic data (Ray & 

228 Adams, 2001). The current biome map is based on the widely recognized global maps 

229 of floristic or zoogeographic provinces, global maps of broad vegetation types, 

230 consultations from regional experts, and current climatic data (Olson et al., 2001). 

231 The current and LGM biome maps include 15 and 24 biomes, respectively. 

232 Therefore, we regrouped LGM biomes to match the current classifications according 

233 to Pärtel et al. (2017). The desert biome had a larger distribution during LGM than 

234 nowadays (Figure 1). Spatially, the distribution of the desert biome largely overlaps 

235 with that of arid and hyper-arid regions of the world (Figure 1). However, vegetation 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://daac.ornl.gov/index.shtml


This article is protected by copyright. All rights reserved

236 distributions were impacted not only by climate (Thomas & Nigam, 2018) but also by 

237 changes in sea level, large vertebrate migrations, fire disturbance regimes or 

238 geological activity (Olson et al., 2001; Ray & Adams, 2001; Sarnthein, 1978). 

239 Therefore, the desert biome is not synonymous with arid and hyper-arid climates 

240 (Figure 1).

241 We defined desert legacy as a binary variable depending on whether it was a 

242 desert (105 sites) or not (131 sites) during the LGM. Similarly, current desert 

243 distribution is a binary variable depending on whether a given site is currently a desert 

244 (63 sites) or not (173 sites). We included the two binomial variables in the statistical 

245 analyses described below. The desert biomes were delineated based on thresholds of 

246 both climate and key ecosystem properties such as vegetation cover (Olson et al., 

247 2001; Ray & Adams, 2001). When key ecosystem properties such as vegetation cover 

248 are pushed over given thresholds, ecosystem regime shifts are likely to occur (here 

249 from non-desert to desert, D’Odorico, Bhattachan, Davis, Ravi, & Runyan, 2013) and 

250 its biodiversity and functions may be greatly altered (Hastings & Wysham, 2010; 

251 Pardini, Bueno, Gardner, Prado, & Metzger, 2010). Therefore, the binary variable of 

252 desert and non-desert should be a complement to the continuous climatic variables 

253 being studied here.

254 2.5 Statistical analyses

255 We fitted a generalized least squares (gls) model using multifunctionality as our 

256 response variable and desert and climate legacies, current desert and climate, soil pH 

257 and sand content, plant species richness, and site elevation and slope as predictors. 

258 This approach allows to incorporate in the model a spatial correlation structure to 

259 account for the autocorrelation found within our 236 study sites. We evaluated gls 

260 models with different spatial correlation structures using the Akaike information 

261 criteria (AIC), and found that an exponential spatial correlation structure best 

262 described the autocorrelation within the sites surveyed. The gls does not automatically 

263 select predictive variables. Therefore, we first included all the potential predictor 

264 variables, and then simplified the fitted model using a stepwise variable selection by 

265 manually removing at each step the predictor with less explanatory power (Table 1). 

266 Finally, we selected the best model with the lowest AIC (Burnham & Anderson, 2003; 

267 Shipley, 2009). The semivariogram of the residuals of the final model used suggested 

268 that our approach effectively removed spatial autocorrelation (Figure S4). These 

269 analyses were carried out with the R package “nlme” version n 3.1-137 (Pinheiro, 
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270 Bates, DebRoy, Sarkar, & Team, 2012). 

271 We then used variation partitioning (Legendre, 2008) based on linear regression 

272 to identify the unique portion of variation in multifunctionality explained by four 

273 groups of predictors: (1) LGM desert legacy, (2) temperature and precipitation 

274 legacies, (3) current temperature, precipitation and desert distribution, and (4) other 

275 drivers (location, soil, plant, and site elevation and slope). The variation partitioning 

276 approach followed uses partial regression to partition the variance in 

277 multifunctionality with respect to the four groups of predictors. Some proportions 

278 were attributed to a particular group of predictors (unique variation) and some were 

279 shared among all predictors (shared variation). We used adjusted coefficients of 

280 determination (R2) in the variation partitioning to account for the different number of 

281 predictors included in each of the four categories. In some cases, the adjusted R2 can 

282 be negative, which means that the predictors explained less variation than expected by 

283 chance (Legendre, 2008); we set them to zero. We used permutation tests for 

284 redundancy analysis ordination, as described in Oksanen et al. (2018), to test the 

285 significance of unique variation explained by each group; the significance of the 

286 shared variation was not testable. We conducted variation partitioning analyses using 

287 the R package “Vegan” version 2.4-5 (Oksanen et al., 2018).

288 We used confirmatory path analysis (CPA) to further investigate the direct and 

289 indirect (via plant species richness and soil properties) effects of current and LGM 

290 climates and desert distributions on the multifunctionality of the 236 drylands studied. 

291 CPA allows the analysis of multiple variables that can present complex dependencies 

292 among them, which enabled us to partition the direct and indirect effects of different 

293 predictors (Shipley, 2009). We developed an a priori CPA model (Figure S5) that 

294 included all the relationships based on previous knowledge of the potential 

295 relationships between our variables (Delgado-Baquerizo, Bissett, et al., 2017; 

296 Soliveres et al., 2014). We included in the CPA generalized least squares (gls) fitting 

297 of multifunctionality, plant/soil variables and their predictor variables (Figure S5). We 

298 then simplified the CPA by removing non-significant paths and selected the best 

299 model as that having the lowest AIC. The final CPA included a gls fitting using 

300 multifunctionality as response variable and the desert and temperature legacies, 

301 current temperature, soil sand content, and elevation as predictors, and a second gls 

302 fitting using soil sand content as response variable and the temperature legacy, current 

303 temperature and precipitation, and as predictors. Since we included the spatial 
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304 correlation structure within all gls included in the model, CPA also effectively 

305 removed the potential autocorrelation among our sites (Figure S6). We conducted 

306 CPA using the R package “piecewiseSEM” version 2.0.2 (Lefcheck, 2016). 

307 We checked the normality of all variables before and after log- and square-root 

308 transformations using the Shapiro-Wilk test as implemented in R, version 3.5.1 (Team, 

309 2018). We then selected the transformation that allowed a best fit to a normal 

310 distribution for each variable. To address the quadratic relationships observed 

311 between multifunctionality and both soil pH and site elevation (Figure S7), we 

312 included x and x2 terms in all statistical analyses, where x is either pH or elevation. 

313 We selected the quadratic model over the linear one if the Δ of differences in AIC 

314 between these two models, i.e. AIC linear −AIC quadratic, was larger than two 

315 (Burnham & Anderson, 2003). 

316 As recommended (Byrnes et al., 2014; Manning et al., 2018), and to help 

317 interpreting our results, we also repeated CPA analyses for all 12 measured functions 

318 separately to test whether the effects of climate and biome legacies were consistent on 

319 the overall multifunctionality and individual functions (Table 2). Moreover, we 

320 conducted CPA for rate- and stock-based multifunctionality, respectively, to test 

321 whether the legacy effects were consistent between nutrient stocks and their 

322 transformation rates. 

323 Plant functional diversity is a major driver of dryland multifunctionality (Gross et 

324 al., 2017) that is also likely to be affected by past climate and biome distribution 

325 (Blonder et al., 2018). Hence, we also retrieved trait data for two key traits, plant 

326 height and specific leaf area, from the TRY database (Kattge et al., 2011) as described 

327 in Gross et al. (2017). A total of 123 of the 236 sites surveyed had trait information 

328 available (Gross et al., 2017). We also conducted a CPA using these 123 sites to 

329 control for potential indirect effects of past conditions on current multifunctionality 

330 driven by functional traits. Including trait predictors did not essentially affect our 

331 results (Figure S8). However, among the 123 sites with trait information only fifteen 

332 are desert biome currently. Such small sample sizes decreased our confidence when 

333 testing the hypothesis of functionality debt caused by desert legacies. Therefore, we 

334 only present the results using all 236 sites in the main text. We also controlled for 

335 regional differences in other potential confounding factors such as human influence 

336 (i.e., population pressure and land use; Last of the Wild Data, 2005), by using the 

337 residuals after fitting multifunctionality vs. human influence index (Figure S9).
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338

339 3. RESULTS

340 We found a significant negative association between desert legacy and current 

341 ecosystem multifunctionality. The mean multifunctionality was 30% (±6%) lower in 

342 drylands that were deserts during LGM than those were not (Table 1). Temperature 

343 legacy was also negatively and significantly associated with multifunctionality; this 

344 variable was reduced by ~ 9% per degree warming (Table 1). In other words, 

345 regardless of their past biome distribution, locations with the largest increases in 

346 temperature over the last 22K years had the lowest multifunctionality. Similarly, 

347 current temperature was also negatively and significantly associated with 

348 multifunctionality, albeit the rate of decrease (~ 2% lower per degree warming) was 

349 much lower than that observed with temperature legacy (Table 1). Soil sand content 

350 was negatively related to multifunctionality (Table 1). 

351 Both desert and climate legacies explained unique and significant proportions of 

352 variation in multifunctionality (13% in total, Figure 2). Interestingly, current climates 

353 and desert distribution explained a small (< 3%), albeit statistically significant (P < 

354 0.01), unique proportion of variation. Additional environmental predictors including 

355 soil, geographical, and plant variables explained the highest unique proportion of 

356 variation in multifunctionality (~ 33%). The shared variation among all predictors was 

357 around 2% (Figure 2).

358 Our confirmatory path analysis explained ~43% of the variation in 

359 multifunctionality (Figure 3a). It confirmed the strong negative associations between 

360 contemporary multifunctionality and past desert distribution and temperatures, even 

361 after considering major drivers of dryland multifunctionality such as current climate, 

362 soil properties, site topography, plant species richness, functional diversity and human 

363 influence (Figures 3 and S8-9). These negative associations were driven by the effects 

364 found both on nutrient stocks, such as soil organic carbon, and their transformation 

365 rates, such as plant productivity (Table 2), indicating that both were equally sensitive 

366 to legacy effects. The negative effects of desert and temperature legacies were also 

367 consistent for 60% of the individual functions (vs. only 13% positive effects, Table 2), 

368 and when including more functions in our analyses (16 instead of 12 functions, Figure 

369 S10). We found that LGM desert and temperature legacies had strong negative direct 

370 effects on multifunctionality, which were about 250% stronger than those found for 

371 current climate and desert distribution (Figure 3a). Temperature legacies also had 
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372 indirect (via positive effect on soil sand content) negative effects on multifunctionality 

373 (Figure 3a). Desert and climate legacies had a ~ 10% larger standardized total effect 

374 (i.e. sum of indirect and direct effects) on multifunctionality than current desert and 

375 climate (Figure 3b).

376 Current temperature had both direct and indirect (via soil sand content) negative 

377 effects on multifunctionality (Figure 3a). It also had negative effects on about 70% of 

378 the individual functions (Table 2). Current precipitation positively and indirectly 

379 influenced multifunctionality through the effects on soil sand content, albeit its effects 

380 were only about 25% of the respective effect size of desert and temperature legacies 

381 (Figure 3b). Soil sand content negatively impacted multifunctionality (Figure 3a); it 

382 also had negative effects on seven individual functions (vs. only one positive effect, 

383 Table 2). Biodiversity had no significant effects on overall multifunctionality, 

384 although it significantly and positively impacted soil organic C, soil hexoses and soil 

385 enzymatic activity of phosphatase (Table 2). However, when multifunctionality was 

386 calculated based on a different set of functions (16 stocks and rates, Figure S10), we 

387 found a positive effect of species richness on multifunctionality. 

388

389 4. DISCUSSION

390 Our work provides empirical evidence of a long-term functionality debt in global 

391 drylands promoted by legacy effects of past temperature and desert biome distribution. 

392 These results add to the increasing evidence that past conditions largely influence 

393 current ecosystem structure and functioning (Delgado-Baquerizo, Eldridge, et al., 

394 2017; Monger et al., 2015; Ogle et al., 2015; Pärtel et al., 2017), and provide novel 

395 insights about the potential impacts of the climatic changes occurring today for future 

396 ecosystem functioning. Importantly, here we found that the negative association 

397 between legacy effects and multifunctionality was not only related to stocks but also 

398 to nutrient transformation rates, which are fundamental components of ecosystem 

399 functioning. Moreover, past legacies had always larger effects on multifunctionality 

400 than those of current biomes and climate, which cautions about the potential 

401 underestimation of the functional consequences of current warming rates, as the total 

402 effects may take some time to manifest. Climatic legacy effects were mainly driven 

403 by increases in temperature rather than by changes in rainfall, suggesting that ongoing 

404 global warming may have a more detrimental effect on the future of dryland 

405 multifunctionality than forecasted changes in rainfall patterns. 
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406 There are several mechanisms explaining the legacy effects of past biome and 

407 climate on both stock- and rate-based functions. First, past climate is known to have 

408 an effect on soil texture (our results, Prentice et al., 1992) and also on current 

409 microbial diversity and plant functional traits patterns (Blonder et al., 2018; 

410 Delgado-Baquerizo, Bissett, et al., 2017), which are important factors influencing 

411 nutrient flux rates and primary productivity in drylands (Delgado-Baquerizo et al., 

412 2016; Gross et al., 2017). Second, past climate and biome distribution may drive 

413 biotic inputs on soils for millennia, something likely to have a substantial influence on 

414 current nutrient stocks. This has been previously observed for soil C 

415 (Delgado-Baquerizo, Eldridge, et al., 2017) and we found similar results for both N 

416 and P stocks. Third, nutrient stocks and their transformation rates are interdependent. 

417 The rates of nutrient fluxes are affected not only by current environmental factors 

418 such as climate and vegetation type, but also the size of nutrient stocks (Shen, 

419 Jenerette, Hui, & Scott, 2016). For example, many ecosystems in drylands are N 

420 limited, and thus their rate of primary productivity are influenced by soil N stocks 

421 (Harpole, Potts, & Suding, 2007). Nitrogen transformation rate is positively affected 

422 by the size of microbial biomass (Chen et al., 2017), which is generally C limited 

423 (Conant et al., 2011); therefore, N transformation rate is likely to be positively 

424 affected by soil C and N stocks, as already observed in our database 

425 (Delgado-Baquerizo et al., 2013). Therefore, changes in nutrient stocks caused by past 

426 climate and biome conditions are likely to affect current nutrient transformation rates 

427 (see Table 2). In addition to the potential mechanisms behind the legacy effects of 

428 past climate, desert biomes are characterized by low vegetation cover and productivity, 

429 high soil erosion rates, extremely slow rates of soil formation, reduced nutrient 

430 turnover and slow recovery after disturbances (Borrelli et al., 2017; Chandler, Day, 

431 Madsen, & Belnap, 2019; Webb, 2002). These characteristics might contribute to the 

432 negative legacy effects from past desert distribution observed in our study. It has been 

433 estimated that the recovery of ecosystem functioning after anthropogenic disturbances 

434 may take from centuries to millenia in drylands (Belnap & Warren, 2002; Lovich & 

435 Bainbridge, 1999). Although these examples show legacy effects from relatively 

436 shorter timescales compared to that found in our study, they illustrate the inherent 

437 slow dynamics in ecosystem functioning typically observed in drylands, and may 

438 suggest similar slow recovery after natural disturbances such as climate variation and 

439 biome migration. 
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440 Our findings indicate that a reversal from desert to more mesic biomes may still 

441 be impacted by a functionality debt from its past condition. Recovering a disturbed 

442 ecosystem might take from centuries to thousands of years, and an interim recovery 

443 debt (the reduction of ecosystem functions occurring during ecosystem recovery after 

444 disturbance) will accumulate even if complete recovery is reached (Moreno-Mateos et 

445 al., 2017). A recent meta-analysis has shown that ecosystems recovering from 

446 anthropogenic disturbances such as agricultural transformation and mining had over 

447 35% lower C and N stocks compared with “undisturbed” reference areas 

448 (Moreno-Mateos et al., 2017). Our results show a “functionality debt” (~30% decline 

449 in multifunctionality) of previous environmental conditions associated to desertified 

450 drylands, i.e. high aridity and low vegetation cover. Although they are based on past 

451 climate and biome distribution, and thus may not necessarily extrapolate into the 

452 future, they suggest that the rate of land restoration should consider this functionality 

453 debt and exceed that of land degradation by a similar amount to achieve zero net land 

454 degradation aimed by international initiatives such as the UNCCD (UNCCD, 2012). 

455 Warming reduces soil moisture, and thus inhibits microbial activity, nutrient 

456 cycling, plant growth and vegetation cover in drylands (Foley, Costa, Delire, 

457 Ramankutty, & Snyder, 2003; Huang et al., 2017; Yin, Roderick, Leech, Sun, & 

458 Huang, 2014). Reduction in vegetation cover also increases soil erosion (Casermeiro 

459 et al., 2004; Wei et al., 2007), affecting soil texture and thus promoting soil-mediated 

460 temperature legacy effects. Therefore, sites experiencing higher warming rates from 

461 LGM to current climate have lower multifunctionality than those suffering lower 

462 warming rates (Figure 3). Huang et al. (2017; 2016) predicted deleterious effects of 

463 ongoing global warming on the world´s drylands, including long-lasting droughts and 

464 reduced crop yields and carbon sequestration in the future. In a similar direction, our 

465 results provide empirical evidence that a warming from past to today is negatively 

466 associated with multiple functions in dryland ecosystems worldwide. 

467 Together, our study provides novel evidence that past desert and temperature 

468 legacies have detectable imprints on the current multifunctionality of global drylands. 

469 They highlight the importance of looking not only at current but past conditions to 

470 fully understand current multifunctionality patterns in these ecosystems. Our results 

471 also suggest that ongoing climate change, which will increase the expansion of desert 

472 areas, might substantially compromise the multifunctionality of global drylands in the 

473 future, and that the rate of land restoration should exceed that of land degradation by 
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474 around one third if we aim to maintain the ecosystem functions that underpin the 

475 provision of key services for the 38% of human population in a warmer, and more 

476 arid, world. 
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712 Additional Supporting Information, including Figures S1-10, Method S1 and Tables 

713 S1 and S2, may be found online in the supporting information tab for this article.
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715 Data availability

716 Data in the support of these findings (Data S1) and the R code for the statistical 

717 models conducted are available in figshare (DOI 10.6084/m9.figshare.7570925, 

718 https://figshare.com/s/4985715ce88482a9c460). 

719

720 Table 1 Coefficients of the generalized least squares model fitted to assess the effect 

721 of different predictor variables on ecosystem multifunctionality. This model included 

722 a spatial correlation structure to account for the autocorrelation present within the 236 

723 sites surveyed. We also removed the predictors with low power and the final model 

724 had the lowest Akaike information criteria (see Methods section for details). The 

725 predictor variables with significant explanatory power (P < 0.05) included desert 

726 legacy, mean annual temperature (MAT) legacy, current MAT, soil sand content, and 

727 site elevation (Elevation2, square of elevation).

Predictor 

variables

Coefficients

(mean ± standard error)
P-value

Intercept 1.591±0.170 <0.001

Desert legacy −0.295±0.061 <0.001

MAT legacy −0.085±0.017 <0.001

Current MAT −0.021±0.006 <0.001

Soil sand content −0.011±0.001 <0.001

Elevation2 0.001±0.000 0.009
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729 Table 2 The total standardized effects (direct + indirect) of desert legacy, climate legacy, and current desert and climate on 12 individual 

730 ecosystem functions, based on the significant path coefficients (P < 0.05) of confirmatory path analyses. SOC, soil organic carbon; PEN, soil 

731 pentoses; iNDVI, annual integral of normalized difference vegetation index; HEX, soil hexoses; NIT, soil nitrate; DON, soil dissolved organic 

732 nitrogen; PRO, soil proteins; NTR, soil potential nitrogen transformation rate; AVP, soil available inorganic phosphorus; FOS, soil enzymatic 

733 activity of phosphatase; TP, soil total phosphorus; IOP, soil inorganic phosphorus; MAT, mean annual temperature; MAP, annual precipitation; 

734 Species, plant species richness; Sand, soil sand content; and site elevation (Elevation2, square of elevation).

SOC iNDVI PEN HEX NIT DON PRO NTR AVP FOS TP IOP

Desert legacy −0.21 −0.19 0 −0.33 0 0 0 0 0 −0.12 −0.19 0

MAT legacy −0.19 −0. 13 −0.37 −0.27 −0.12 0.43 −0.35 −0.1 0.12 −0.28 −0.39 0.08

MAP legacy −0.01 −0.14 −0.33 0 0.35 0 0 0 0.2 −0.13 0.22 0.14

Current 

desert
0 0 0 0 0 0 0 0 0.19 −0.14 0 0

Current MAT − 0.62 0 −0.61 −0.18 −0.27 0.32 0 −0.36 −0.33 −0.64 −0.75 0.07

Current MAP 0.27 0.58 0 0.53 −0.03 0.07 −0.37 0.11 −0.34 0.46 0.14 −0.32

Species 0.16 0 0 0.1 0 0 0 0 0 0.09 0 0

Sand −0.47 0 0 −0.16 −0.32 −0.16 0 −0.24 0 −0.34 −0.3 0.21

pH 0.31 0 0 0.2 0 0 0.24 0 0 0.28 0 0

pH2 −0.34 0 0 −0.22 0 0 0 0 0 −0.31 0 0

Elevation −0.09 0.48 −0.52 −0.05 −0.14 0.44 0.68 0 0 0 0 0

Elevation2 0.23 −0.74 0 −0.08 −0.16 −0.07 −0.67 −0.32 0 −0.55 −0.14 0.1
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736 Figure captions

737 Figure 1 Geographic locations of the 236 dryland sites surveyed and distribution of 

738 global desert biomes and drylands. The desert biomes under the Last Glacial 

739 Maximum (a) and current environmental conditions (b) were obtained from Ray & 

740 Adams (2001) and Olson et al. (2001), respectively. The current extent of drylands, as 

741 defined by the aridity index (AI, the ratio of precipitation to potential 

742 evapotranspiration), is shown in panel (c) (source: Trabucco & Zomer, 2009). 

743 Drylands include arid and hyper-arid (AI < 0.2), semi-arid (0.2 ≤ AI < 0.5) and dry 

744 sub-humid (0.5 ≤ AI < 0.65) regions. 

745

746 Figure 2 The unique and shared proportions of variations in multifunctionality 

747 explained by different predictors. We used variation partitioning analysis to calculate 

748 the proportions of variations. Significance levels are as follows: *** P < 0.001, ** P < 

749 0.01. The significance of the shared variation could not be statistically tested. The 

750 unexplained residual variance was 0.49.

751

752 Figure 3 Confirmatory path analysis (CPA) accounting for the direct and indirect 

753 effects of environmental predictors on multifunctionality. (a) The significant path 

754 coefficients, describing the strength and sign of the relationships among the variables, 

755 are shown adjacent to the arrows (significance levels as follows: *** P < 0.001, ** P 

756 < 0.01, *P < 0.05). Paths of site elevation and slope were not included for simplicity, 

757 since the main objective of this study was to evaluate the legacy effects of climate and 

758 biome. MAT: mean annual temperature; MAP: annual precipitation; Soil sand: soil 

759 sand content. The CPA conducted had a Fisher's C = 5.57, four degrees of freedom 

760 and a P-value = 0.23, suggesting that it had a good fit to our data (Grace, 2006). (b) 

761 Standardized total (direct + indirect) effects of desert and climate legacies, and of 

762 current desert and climate on multifunctionality, based on CPA.
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